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We consider the approach to thermal equilibrium of a classical homo- 
geneous dense gas with pair interaction corresponding to strongly repulsive 
forces of range e. A series of systematic approximations to the equation 
determining the rate of change of the one-particle reduced distribution is 
proposed. Attempting to formulate Enskog's ideas in microscopic language, 
we construct a description within which the effect of s-particle dynamics 
(s = 2, 3 . . . .  ) is treated exactly, and the approximation affects only the 
influence of the medium on the distribution of s-particle states. It is argued 
that for a system close to equilibrium the effect of the medium is primarily 
due to the equilibrium component of correlations. This leads to a series of 
equations for the one-particle reduced distribution. In the case of s = 2, 
after taking the thermodynamic limit and passing to the long-time regime, 
the Enskog equation is obtained. 

KEY WORDS: Liouville equation; kinetic theory; Enskog equation; 
thermal equilibrium; reduced distributions; correlations. 

1. I N T R O D U C T I O N  

The first impor t an t  cont r ibut ion  to the kinetic theory o f  dense gases dates 

f rom 192t and is due to Enskog,  (1~ who studied the rigid sphere model.  

At tempt ing  to take into account  the influence o f  the finite size o f  the mole-  

cules on the probabi l i ty  o f  binary collisions together  with the fact that  the 
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centers of two colliding spheres are at a finite distance at the moment of 
impact, he suitably modified the Boltzmann collision term and arrived at the 
equation ~2,a) 

+ vl fl(rl ,  vl ; t) 

=fdV2fg.k>o dk~2g "k 

• {x(rl + �89 + ~k, v2'; t)fl(rl, v~'; t) 

- x(rl - �89 - ~k, v2; t)f~(r~, v~; t)} (1) 

Equation (I) determines (in the absence of external fields) the rate of change 
of the reduced one-particle distribution fl(r, v; t), representing at time t the 
density of  particles with velocity v at point r; ~ denotes the rigid sphere 
diameter; and g = v2 - vl. The velocities vl, v2--> vl', v2' refer to a binary 
collision in which the positions r~ and r2 of spheres 1 and 2 at the moment of 
impact are related by the equation r2 = rt - ~k, [k[ = 1. The function X 
appearing in Eq. (1) is usually identified with the local equilibrium radial 
distribution function. 

Although based on intuitive arguments, Enskog's theory agreed so well 
with experiment (see, e.g., Ref. 4) that it became an important theoretical 
problem to understand under what assumptions it could be derived from first 
principles. The research in this field went essentially in two directions: (a) 
formulation and analysis of approximations which permit one to deduce 
Eq. (1) from the Liouville equation; and (b) derivation of the Enskog ex- 
pressions for the transport coefficients from the Green-Kubo formulas 
[within the Enskog theory, transport coefficients are calculated by applying 
the Chapman-Enskog procedure to Eq. (1)]. 

The elucidation of point (a) is still far from being satisfactory and an 
attempt to understand this problem is at the origin of the present work. In 
fact, the content of various papers concerned with point (a) <5-9> does not go 
beyond taking the following two steps: (i) derivation of the exact equation for 
the reduced distributionf~ in the case of a rigid sphere gas: 

(~t + v~ ~ra)f~(r~, vl; t) 

j ( = dr2 dk.~g .k{f2(r~, r~ + ~k, v~, v2, 
�9 J g . k > 0  

- f~ ( r~ ,  rl - ~k, vl, v2; t)} (2) 

where the notation is the same as in Eq. (1), and f2 is the reduced two-particle 
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distribution; and (ii) making the assumption, nowhere clearly justified or 
explained, that one can put 

f2(h, rl _+ ~k, vl, v2; t) 

= g~eq'(r12 = cr; rl __ �89 v~; t ) f d h  • ak~ v2; t) (3) 

where g~eq. is the local equilibrium radial distribution function. 
This certainly does not give the desired understanding of Enskog's theory 

on the ground of statistical mechanics. 
As far as point (b) is concerned, we should mention here a series of 

papers by Sengers et al. ~~ in which a rigorous analysis of the first density 
corrections to the rigid sphere transport coefficients has been performed. 
Using the binary collision expansion technique, the authors studied systemati- 
cally the three-particle contributions in the Green-Kubo theory. They showed 
that only the so-called "double overlap" collisions are taken into account by 
the Enskog theory. However, according to Sengers' estimates, all the other 
three-particle collision processes introduce only a small correction to the 
Enskog transport coefficients. 

The most exhaustive study of point (b) has been performed by Ernst. ~la) 
He investigated the reduced time correlation functions of a rigid sphere gas 
relevant for the Green-Kubo theory by using the cluster expansion of the 
evolution operator. Neglecting systematically all the terms that involved the 
dynamics of more than two particles, he reproduced Ono's (~4) result for two- 
particle correlation functions and arrived at the Enskog expressions for the 
transport coefficients. The effect of the medium on the two-particle dynamics 
has been taken into account in the equilibrium averaging inherent in the 
Green-Kubo formulas. 

Although in the present work we are concerned with point (a) only, our 
main ideas are close to the Ernst interpretation of the Enskog theory. In 
Section 2 we define the model of the gas (not confined to the rigid sphere 
system), and discuss its initial state. Section 3 contains the formulation, based 
on the Liouville equation, of a general approximation scheme for the de- 
scription of the time evolution of distributionf~. In Section 4 we specify our 
approach to the case corresponding to the Enskog theory and complete the 
derivation of Eq. (1) for a homogeneous system. Section 5 contains the dis- 
cussion of our results together with indications for further investigation. 

2. D E S C R I P T I O N  OF THE S Y S T E M  A N D  ITS INITIAL STATE 

Consider a classical dense gas composed of N identical particles en- 
closed in a cube of volume f2. Its Hamiltonian is supposed to have the form 

N N N 

~(x) = Z �89 + Z Z V(r~,) (4) 
~=1 ]>~=i 
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where x - (xl,..., xN) ~ P is a point in the phase space F of the gas, x~ 
(r~, v 0 represents the position r~ and velocity v~ of the ith particle, r~ s = 
Ir~ - rj[, and we formally set the particle mass m = 1. The pair interaction 
between the particles is assumed here to be represented by a continuously 
differentiable function V(r) defined for r > 0, and well approximating the 
potential of rigid spheres of diameter cr (see, e.g., Ref. 8). We thus admit in our 
analysis only strongly repulsive short-range forces, vanishing over distances 
large with respect to some microscopic length or. The Liouville operator in 
this case has the form 

where 

and 

~e = ~e o + ~.~  (5) 

N 

~o = ~ v~(8/Or~) 
a = l  

The N-particle distribution function fN(x; t) describing the state of the gas at 
time t satisfies the Liouville equation 

(O/Ot)fN(X; t) = --5?fN(x; t) (6) 

Equation (6) is to be supplemented with some boundary conditions specifying 
the behavior of the distribution fN(X; t) on the walls of the cubic box con- 
taining the gas. Let %, a = 1, 2, 3, be three mutually orthogonal unit vectors 
parallel to the edges of the cube. We adopt here (for the sake of convenience) 
periodic boundary conditions by putting (see, e.g., Ref. 15, p. 10) 

fu(xl, ..., xN; t) 

= fN(Xl . . . .  , X~-I, (r~ + ~l/ae~, v0, x~+~, ..., xN; t) (7) 
X E r  

i =  1 .. . .  ,N,  a =  1 ,2 ,3  

Equation (7) corresponds to identifying the opposite walls of the cube and 
considering the distribution fN(x; t) as defined on the resulting tore. 

Our aim is to study the long-time behavior of the reduced one-particle 
distribution 

fx(x~; t ) =  N f  dx ..f dxNfN(x~ .... ,xN; t) (8) 

in the thermodynamic limit 

lim -= lira (9) 
oo N ~ oo , f 2  ~ oo , N  l s  n = c o n s t  
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Thus the particular choice (7) of the boundary conditions should be of no 
relevance for our final results. All the functions calculated in the thermody- 
namic limit (9) will be denoted in the text by capital letters, e.g., we write 

F~(xl; t) = limfl(x~; t) (10) 
co 

To begin with, let us formulate our assumptions about the initial state of 
the system. 

(i) Homogeneity condition: At t = 0 the properties of the gas are the 
same at all points of the container. 

Taking into account Eq. (7), we can give this assumption a simple 
analytical formulation: For all vectors a ~ R 3 

fN[(rl + a, vl), ..., (rN + a, VN); 0] 

--= fN[(r~, V~), ..., (rN, vz~); 01 (11) 

Equation (l 1) expresses the translational invariance of the initial distribution. 
Since the Liouville operator (5) commutes with translations, this homo- 
geneity condition is conserved in time. In particular, for any t > 0, function 
(8) does not depend on rl and has the form 

f~(rl, v~; t) = nq~(v~; t) (12) 

where q~(v~;t) is the normalized one-particle velocity distribution. An 
analogous equation holds in the thermodynamic limit 

Fl(r~, v~ ; t) = nO(v~ ; t) (13) 

where q~(Vl; t) = lim~ ~o(v~; t). 
The number density of the particles remains constant, equal to N/~2 = n. 
(ii) Factorization condition (see Ref. 15, p. 17): At t = 0, in the thermo- 

dynamic limit the reduced distribution 

f~,j(x~ ..... x~, v~+~, ..., vj; t) 

_ N,  f (14) (N---- i)! .... 

O < ~ i < j < ~ N  

factorizes into product of the form 
I 

l imf, j(xl ,  ..., x,, v~+~, ..., vj; 0) = F~(x~ ..... x,; 0) ~ q)(v~; 0) (15) 
a=i+ l 

where 

Fi(x~, ..., x,; t) = limfi(x1, ..., x,; t) 
co 

= l i m  N '  f f (N -- i)! dxz+~.., dXNfN(Xl . . . . .  XN; t) (16) 

and �9 is given by Eq. (13). 
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In particular,  the j -part ic le  velocity distribution 

%(vl . . . . .  vj; 0) = fo,j(vl . . . .  , vj; 0) (17) 

satisfies the equat ion 

J 
lira q~j(vl, ..., vj; 0) - ~j(vl ,  ..., vj; 0) = I--[ qb(va; 0) (18) 

oO O , = 1  

j =  1 ,2 , . . .  

Equat ion (15) is int imately connected with cluster propert ies of  correlations. 
In  order  to show this, let us study, e.g., the case of  the two-particle function 

1 f 
92(V1, 0 )  - N(N - l )J  dr1 j d,'j2(xl, 0) (19) 

In  view of  the assumed translat ional  invariance (11), the cluster decomposi t ion 
o f f2  has the form 

f2(xl, x2; 0) = n29(vl; 0)9(v2; 0) 

• [1 + g2(rl - r2, vl, v2; 0)] (20) 

where g2 is the initial two-part icle correlat ion function. Hence 

dr g2(r, 1 ~o~(vl, v~; 0) - m - -  l ~o(v~; 0)~o(v~; 0) 1 + ~ v~, v~; 0) (21) 

Now,  if g2(rl - r2, vl, %; 0) vanishes for  Ir~ - r2[ --> o% the second term in 
square brackets  in Eq. (21) tends in the the rmodynamic  limit to zero, and 
we get 

lim ~o2(vl, v2; 0) = ~(v~; 0)~(v2; 0) 
co 

which is the desired result ( compare  with Ref. 15, pp. 15, 16). In a similar way 
all the other equat ions in condit ion (15) can be shown to be implied by cluster 
propert ies  of  correlations.  

The  fundamenta l  question still remains whether  the proper ty  (15) is 
conserved in time. Various arguments  have been given in favor  of  this con- 
jecture,  but to our  knowledge a sat isfactory p roo f  is still lacking. An elegant 
discussion of  some aspects o f  this problem can be found in Ref. 16. We shall 
assume here that  Eq. (15) remains valid for all t > 0. We thus suppose that  in 
the course of  the evolution of  the gas the correlat ion functions at each 
m o m e n t  have the cluster propert ies,  i.e., they tend to zero when the spatial 
separat ion between the particles tends to infinity. A p roof  of  this impor tan t  
dynamic  property,  which seems to us highly probable  on physical grounds,  
would be welcomed.  In order to avoid any confusion,  it should be stressed 
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that Eq. (15) does not impose factorization conditions on the reduced distri- 
bution (16), a property physically unrealistic and obviously not conserved in 
time (see Ref. 19, p. 242). 

We shall now show that the homogeneity and factorization conditions 
(i) and (ii) admit the existence of a time-independent idempotent operator 
p = p2 extracting in the thermodynamic limit from the distribution fN(X; t) 
its uncorrelated part I-Lfl(x~; t) at any t > 0. In order to make this state- 
ment precise, let us define this operator by the equation 

(Pfu)(Xl,  ..., Xu; t)  = C2-Nq)N(Vl, ..., VU; t) (22) 

[see Eq. (17)]. The calculation of the thermodynamic limit for the reduced 
distributions associated with PfN gives 

.... lim N! 

= ILl  [n(1)(v~;,t)] = I~ I  F1(v,; t) (23) 
i=i ~=I 

where our assumptions (i) and (ii) have been taken into account. Defining the 
operator Q = I - P, we can thus say that the decomposition 

f u (x ;  t) = PfN(x; t) + Qfu(x;  t)  (24) 

corresponds to the division of the distribution fw(x; t) into the uncorrelated 
and correlated parts. This interpretation of P and Q, valid for any t > 0, will 
turn out to be very useful for the derivation of  the equations of the next 
section. 

3. T IME  EVOLUTION OF THE R E D U C E D  ONE-PARTICLE 
DISTRIBUTION.  IDEA OF A P P R O X I M A T I O N  

The Liouville equation (6) can be formally written as 

~ f N ( X ;  t)  = - -~ fN(X;  t) = -- ffN[~Y(X; --t) ;  O] 

= - - ~ [ e x p ( - - ~ t ) ] f N ( X ;  0) (25) 

where exp(- -2 ' t )  is the N-particle streaming operator, transforming the 
phase x of the system at time zero into the phase 2(x; - t) which it had a time 
t earlier. In order to make evident in the right-hand side of Eq. (25) the 
dynamical evolution of correlations in the gas, we shall introduce the opera- 
tors P and Q defined by Eqs. (22) and (24). We follow here the ideas of the 
theory of kinetic equations as developed by the Brussels school (Refs. 15, 17; 
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see also Ref. 18). The physical interpretation of decomposition (24) given at 
the end of Section 2 is to be constantly kept in mind. 

Applying operator P to Eq. (25) and using the identity 

exp(-Set)  = exp(-~WQt) - dr [exp(-L~'Qr)lSaP exp[-L,~ - r)] 

we get 

where 

fo t PfN(x; t) = ~( t )QfN(x;  O) + dr fr t - ~') 

(26) 

(27) 

9 (  t ) = - P S ~  Q [ e x p ( -  Se Qt ) ] Q (28) 

fy(t) = P85eQ[exp(-SYQt)] /Q~ c lP (29) 

In writing Eqs. (28) and (29), the relations 

e ~ o  = ~ P  = P ~ o e  = 0 (30) 

have been taken into account. The structure of Eq. (27) is well known from 
the general theory of kinetic equations, and will not be discussed here. Let us 
only notice the appearance in Eqs. (28) and (29) of a modified evolution 
operator 

O[exp( -SeOt ) ]Q  = ~( t )  (31) 

The role of the generator of time translations is played here by Q ~ Q ,  which 
corresponds to constantly subtracting from the propagated distribution its 
uncorrelated part. In this sense operator (31) is said to describe an irreducible 
dynamics of correlations. 

Integrating Eq. (27) over the velocities of particles 2, ..., N and multi- 
plying by YU, we obtain 

(O/Ot)~o(vl; t) : f2 N f (dv )N- l ( -PS~q~( t ) fN(x ;  O) 

+ dr P S ~ ( t ) 8 ~ P f N ( X  ; t -- "c) (32) 

where f (dr) u - l =  f dr2.., f dvN. The kinetic operators (28) and (29) have 
been expressed here in terms of the irreducible operator (31). 

Equation (32) is exact and can serve as the basis for the microscopic 
analysis of the time evolution of a dense gas. In order to go a step further, we 
shall now separate out the class of contributions depending on the dynamics 
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of no more than s particles. To this end, we notice that, due to the. sym- 
metric role played by all the particles, we can transform Eq. (32) to the form 

n(~/~t)~(v~; t) 

= 2 f 2 ~ - l f  dv2.-" f dv~{~'"~( t )Qf~(xl  . . . . .  x~; O) 
a = 2  

f0' + dr f~l .... (r)Pf~(xl, ..., Xa; t -- r 

s  + f2 ~ d~- dr2..- dvs+~ N~ ' "~ ( r ) [ -~  ~'(~+~) + 2av"q 

x f~+l(x~ .. . .  , x .+l ;  t - r) (33) 

In the terms in curly brackets in Eq. (33) the correlated and uncorrelated 
parts of the a-particle reduced distributions are acted upon by the kinetic 
operators 

~ ( t )  = P ( - ~  + ~ ) ~ * ~ ( t )  

~ z ~ ( t )  = dra dr4"- dr~ P{(-oW z2 + 5 f l ) ~ 2 ( t  - ra) 
,JO 

• ( - ~ * ~  + ~ ) ~ ( , ~  _ ~ ) . . . ~  .... - ~ ( ~ _ 1  - ,o)  

x ( - ~  .... + ~el .... -~)~'"~(%)}, a /> 3 (34) 

and 

~1.. .o(,)  = _~ l . . . a ( , )~e~ . . . ap  (35) 

respectively. Here ~ . - .b  denotes the b-particle Liouville operator, and 
@1""b(t) is given by Eq. (31) with ~a replaced by ~cf~...b. A simple method of 
proving Eq. (33) is presented in the appendix. 

It is clear that both operators (34) and (35) are determined by the a- 
particle dynamics. On the contrary, the last term in Eq. (33), containing the 
operator (-2.q ~''~+ 1 + Sl""s), describes the effects due to collisions between 
s + 1 or more particles. For the purpose of further discussion we rewrite it in 
the form 

fo' ar f dv2.., f dv~ ~ ' "~ ( r )  

x [(O/~t) + ~ ' "q f~ (x~  .. . .  , xs; t - ~-) (36) 

where the BBGKY hierarchy has been used (see, e.g., Ref. 3, p. 37). 
Approximations consisting in neglecting term (36) in Eq. (33) are well 

known and correspond to the expansion in powers of density of the kinetic 
Operators. For s = 2 and s = 3 they lead to the Boltzmann and Choh-  
Uhlenbeck theories, respectively. However, for s > 3 the nonanalyticity in 
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density shows up and one is faced with the divergence problems extensively 
discussed in the literature (see, e.g., Ref. 19 and references given there). 

We shall now propose another type of approximation to Eq. (33), which 
in the case of s = 2 will lead to the Enskog theory. The physical ideas under- 
lying our approach refer to a dense gas at the late stage of its evolution 
toward thermal equilibrium. This is conveniently taken into account by 
introducing the reduced s-particle distributions of the form 

f ~ q ( x l , . . . ,  xs)~(vl ..... vs ; t)flpeq(vl, ..., vs) (37) 

which correspond to approximating the correlations in the gas at time t by 
their equilibrium values. The exact distribution can be then written as 

f~ (x l  . . . . .  xs;  t )  = f~e~(xl . . . . .  x~)5%(vl .... , v~; t)/q~q(vl, ..., v~) 

+ 3f~(x~, ..., x~; t )  (38) 

where the additional term 3f~ describes the nonequilibrium deviations of 
correlations, Keeping decomposition (38) in mind, let us now analyze con- 
tribution (36)on  the rhs of Eq. (33). Its role consists in modifying the in- 
fluence of s-particle dynamics on the rate of  change of the distribution 
f~ (xa ;  t )  by taking into account the presence of the surrounding medium 
through collisions involving more than s particles. Indeed, the s-particle 
kinetic operator ~ l ~ ( r )  in Eq. (36) is followed by the expression 

[(a/Dt) + ~" '~)]f~(xl  ..... x~; t - ~-) (39) 

which, as is known from the BBGKY hierarchy, determines (in the thermo- 
dynamic limit) the effect of collisions with N - s particles of the medium on 
the phase space and the time dependence of the distribution f~(xl, ..., xs; 
t - 7). It is precisely the term (39) that we want to approximate. The s- 
particle dynamics will be treated exactly within our theory. 

To being with, let us notice that at equilibrium expression (39) takes the 
form 

{(a/at) + ~ L P l q f 2 q ( x z ,  ..., x~) 

= ~q~l""sf:q(xl . . . . .  xs) 

= nS~q(v l  . . . .  , v~)Ws(rl  . . . .  , r~)Nel""~y~(rl, ..., r~) (40) 

where we put 

f ~ q ( x l ,  ..., x~) = n ~ q ( v l ,  ..., v~)W~(rl . . . .  , rs)y~(h .... , r~) (41) 

with 

I4%(rl, r~) exp[--  fl V(rzj)] ; fi 1 / k T  

where T is the temperature and k is the Boltzmann constant. 
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On inserting decomposition (38) into Eq. (39), we recover an analogous 
term 

nS%(vz . . . .  , Vs; t -- ~')Ws(rl, ..., rs)~l'"~ys(rl, ..., rs) (42) 

in which the time-dependent velocity distribution has replaced ~~ Besides 
this, we shall find additionally two contributions 

f:q[(8/st)  + ~ l q ( w 2 ~ ? )  + [(8let) + ~el:..s] 8Z (43) 

Expression (42) represents a nonequilibrium generalization of the rhs of Eq. 
(40), in which the dependence on the position variables is kept unchanged. 
Therefore, in contradistinction to contributions (43), it refers to the equi- 
librium component of the correlations in the gas, and can thus be supposed, 
for a system close to thermal equilibrium, to give a very good approximation 
to the influence of the medium on the evolution of the distributionf~. Adopt- 
ing this point of view, we can now construct a theory in which the calculation 
of the rate of change of the one-particle reduced distribution is based on the 
following principles: (a) The influence of s-particle dynamics is rigorously 
taken into account, and (b) the influence of the medium on the distribution of 
s-particle states [Eq. (39)] is approximated by expression (42). 

Let us stress once more that point (b) implies that the role of the equi- 
librium component in the actual time-dependent correlations is properly 
taken into account. This in fact is necessary to get the correct equilibrium 
properties at the final stage of the evolution of a dense system, which was one 
of the problems Enskog was concerned with. It is clear that point (b) makes 
our approach fundamentally different from theories based on the density 
expansion of the kinetic operators. 

Applying principles (a) and (b) to Eq. (33), we get 

t) 

= taO-lf av2.., f dvo ..:, xo; 0) 

+ d r  ( f f l " " a ( T ) f a ( x  1 . . . .  , x~;  t - r 

f / f  f + f2 ~- ~ d r  dr2""  dv~ ~ ' " s ( r ) n S % ( v ~  ..... v,; t - r) 

x W~(rl ..... r~)~l""Sy~(r~ .. . .  , r,) (44) 

In the next section the case ofs  = 2 is shown to correspond to the Enskog 
theory. 



122 B. Cichocki and J. Piasecki 

. DERIVATION OF THE ENSKOG EQUATION 

In this section we study Eq. (44) for s = 2. Using Eqs. (12), (22), (34), 
and (35), we write it in the form 

- f  dx2 ~,ce ~2 e x p ( -  La~2 at)  (8/st)fl(vl t) 

x Qf2(x~, x2; O) + dr dx2 ~.qf~2 exp(_~12Q~.) 

x Q{~2Pf2(xl ,  x2; t - ,) - exp[-13V(rz2)] 

• S~lo2y(r12)n2~2(vl, vg.; t - ~')} 

where y(r12) = y2(rl, r2). 
The term in the curly brackets in Eq. (45) contains the expression 

{exp[-  fi V(r~2) ]}~o ~2y(r12) 

= LYlg'{exp[-13V(r12)]}y(rz2) - y(r12)LY~{exp[-13V(r~)]} 

- ~a~{exp[-13V(r~)]}y(r~2) 

where the terms 

(45) 

(46) 

y(r12)~q~ 2 exp[-flV(r12)] 

= y(rlz)v12{(O/Ora2) exp[-flV(r12)]} (47) 

and 

3~q~a12{exp [_  t3 V(rz2)l}y(r~2) 

= 1 6q 13- y(r12)(-8-~2 exp[-13V(rz2)])( ~ ~ 2 )  (48) 

appear. In both of them the function y(r12) multiplies the derivative 

(e/Sr12) e x p [ -  13 V(r12)] (49) 

According to our assumption (see Section 2) the interaction V(r~2), although 
continuously differentiable, is close to the rigid sphere potential 

{oo, rl~ < ,~ 
V(r~2) = O, r12 > (50) 

Thus the presence of the derivative (49) in terms (47) and (48) reduces the 
space integration in the corresponding contributions to the rhs of  Eq. (45) to 
a small neighborhood of the sphere r~2 = a. It is therefore justified to replace 
in both of them the continuous [even for potential (50)] function y(r~2) by its 
value Y(r~2)lr12=~ = Y(~). Although this procedure is rigorous only for the 
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rigid sphere interaction, it is certainly a very good approximat ion for strongly 
repulsive forces of  range or. 

Using this fact, we write the rhs of  Eq. (46) in a simplified form:  

5e12[y(r12 ) - y(a)] exp[-/3V(r12)] (51) 

and by inserting it into Eq. (45) we obtain 

(~l'~t)fl(v~ ; t) = f dx2{ - ~ 1 ~  [exp( - s162 Qt)] Qf2(xl;  x2; o) 

I2 - dT 3 ~  12 [ e x p ( - ~ 1 2 Q r ) ] Q ~ 2 Q  exp[-/?V(r~2)] 

x [ y ( r ~ )  - y ( ~ ) ] n ~ % ( v l ,  v 2 ;  t - ~-) 

s + dT ~2P ~2 [ e x p ( - ~ 2 Q ~ - ) ] Q  ~ 2 p  exp[-pV(r~2)]  

x y(o)n2q~2(vl, v2; t - T)~ (52) 
J 

where the relation 

Pf2(x~, x2; t - ~-) = [N(N - 1)/f22192(vl, v2; t - r) 

= P{exp[-I~V(r~2)]}y(r~2)n 2 92(v~, v~; t - ~-) 

has been taken into account  [see also Eq. (41)]. 
In order  to pass in Eq. (52) to the thermodynamic  limit, we notice that 

due to our  assumptions about  the initial state (see Section 2) the following 
equat ion holds:  

lim Qf2(xl ,  x2; O) 
co 

= lim[f2(x~, x2; O) - N ( N  - l)f2-2q~2(v~, v2; 0)] 
oo 

= F2(x~, x2; 0) - n2qb(vl, v2; 0) = F2(x~, x2; O) - Fl(x~; O)F2(x2; O) 

By introducing the two-particle correlation function 

G2(x~, x2; O) = [F2(x~, x2; O)/F~(xl; 0)F~(x2; 0) - 1] 

we get 

lim Qfz(x , ,  x2; O) = G~(x~, x~; O)F~(x~ ; O)F~(x2; 0) (53) 
o o  

Similar calculations lead to the equat ion 

lim Q exp[-flV(rz~)]{y(r~2) - y(cr)} = G~(r~ )  - y(~r)G~qo(r~2) (54) 
r 

where Y(~r) = lim~ y(~r) and G~qo(r~2) = exp[-/~(V(r~2)] - 1 is the zeroth- 
order  term in the expansion in powers of  density of  the equilibrium pair 
correlation function Geqtr ~ 2 \ 1 2 1 "  
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Finally we have 

lim P exp[-/3V(r12)] = 1 (55) 
co 

Apart from Eqs. (53)-(55) it can be shown that when f~ --> ov the difference 
between the operators [exp(-5~12Qt)]Q and [exp(-Se12t)]Q behaves like 
f~-1. Indeed, from Eq. (26) we get 

[exp( -  5e 12 Qt)] Q - [exp( -  s Q 

= dr {exp[-Se12Q(t - r ) ] } ~ l ~ P [ e x p ( - ~ 1 2 r ) ] Q  (56) 

Since for the short-range forces considered here, 

P [ e x p ( - ~ l % ) ] Q  

f; = P dr' (O/~r') [exp(-Sel%')]Q 

f2 = - dr' P ~ 2  [exp(_Se12r,)] Q 

= -~2 -1 dr' dr2 ~2p~2 [ e x p ( _ ~ % , ) ] Q  ~ f~-i (57) 
, a0  

the rhs of Eq. (56) can be neglected in the thermodynamic limit (see also Ref. 
20). Consequently Eq. (52) for an infinite volume of a homogeneous gas 
takes the form 

(O/St)F~(v~ ; t) 

= f dx2 ( - 3 5 ~  1~ [exp(-~12t)]G2(xl ,  x2; O) 

x Fl(vx; 0)F~(v2; 0) - dr ~ 2  [exp(_Se12r)]5o~2 

x [ G g q ( r l ~ )  - Y(~)a~,o(r~)lF~(v~; t - ~- )F~(v2;  t - ~-) 

Jo' ) + dr ~ 1 2  [exp(_Se~2r) ] ~5e12 F~(h; t - r)Fl(v2; t - r)Y(~) 

( 5 8 )  

In writing Eq. (58), the factorization property of the velocity distribution (see 
Section 2) has been used. 

We shall now analyze the rhs of Eq. (58) for long times, i.e., for 

t >> T i n i e r  ~ {TU -I 

where cr is the range of the interparticle forces and v is the mean particle 
velocity. The standard arguments used in deriving the Boltzmann equation 
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can be applied here. We thus notice that because of the presence of the 
operator ~2~o~2 in the term 

f dx2 35q ~2 [ e x p ( - ~ 2 t ) l a 2 ( x ~ ,  ;0)Fa(v~ 0)F2(v2 0) (59) X2 

the phases x~ and x2 of  particles 1 and 2 appearing in the initial correlation 
function G2(x~, x2; 0) are constrained to configurations for which Ir~ - rz[ ~ 
a. Therefore at t = 0 particles 1 and 2 interact via strongly repulsive forces. 
The exact two-body streaming operator e x p ( - ~ t )  then changes (x~, x~) 
into phases which particles 1 and 2 had a time t earlier. Thus for t >> rm~o~ 
both particles will be moving freely and their distance will be large with 
respect to a. But for a system close to equilibrium the range of the initial pair 
correlation function can be supposed to be of  the same order as the range of  
equilibrium correlations G~q(r~2), vanishing for r~2 >> a. Hence for times 
t >> rnto~ the term (59) can be neglected. 

The next two terms in Eq. (58), which can be written as 

fotdr f dx~ {~  ~Sf~ [exp(-~'O][G~(r~) - Y(~)G~q,o(r~2)]} 
x F~(vz; t - T)F~(v~; t - r) (60) 

and 

- Y(o) ;~ d~ f dx2 {~  3~12 exp(-~12"~) exp(~2~)} 

x F~(v~; t - r)Fl(v2; t - ~) (61) 

also contain the operator ~s By the same kind of argument as above, the 
integrand in Eq. (60) can be shown to vanish when r >> ~'mJor- For quite a 
different reason this also turns out to be true in the case of  expression (61): 
The time derivative is applied there to the operator 

~5r 12 exp(-s176 -) exp(N~o~2r) (62) 

which, as shown, e.g., in Ref. 3, p. 51, is time independent for -r >> ~-~or. 
Assuming that the distribution F~ changes slowly on the microscopic 

time scale and that t >> rm~r, we can thus approximate the product 
F~(v~; t - ~-)Fl(v2; t - r) in both terms (60) and (61) by its value at r = 0. 
After integrating over r we rewrite expressions (60) and (61) in the form 

f dx2 ~5~ ~2 [exp(-~zt)][G~q(r~,) - Y(a) G~qo(r12)] 

x F~(v~; t)F2(v2; t) (63) 

and 

- Y(a)f dx2 {85r 12 exp(-~12t)exp(~~ ; t)Fl(v2; t) (64) 
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respectively. For t >> ~'mior expression (63) vanishes [compare with expression 
(59)] whereas in term (64) the operator in curly brackets [expression, (62)] can 
be replaced by its limit when t --~ ~ .  As has been shown by various authors 
(see, e.g., Ref. 3 and references given there) we then get, up to the factor 
Y(a), the Boltzmann collision term. 

Our analysis has thus shown that on the basis of much the same argu- 
ments that are used in deriving the Boltzmann equation, Eq. (58) for long 
times takes the form 

0 
~ Fl(vl; t) = Y(~) x Boltzmann collision term 

= r(~)f dv~fbdbf d~ 

x g12{Fl(vl'; t)Fl(v2'; t) - Fl(vl; t)F~(v2; t)} (65) 

(for the notation see Ref. 3). 
In the case of rigid sphere interaction Eq. (65) is identical with the Enskog 

equation (1) written for a homogeneous gas. Our basic approximation (42) 
to the term (39) has introduced the effect of the medium on the binary 
collisions between the particles by multiplying the Boltzmann collision term 
by a factor 

Y(~) = lira {exp[flV(r)]}{G~q(r) + 1} 

5. D I S C U S S I O N  

In this paper we have studied the approach to thermal equilibrium of a 
homogeneous dense gas. Our ideas originated from an attempt to understand 
the Enskog theory at the microscopic level. In order to gain an insight into 
this problem, we have calculated the rate of change of the reduced one- 
particle distribution [Eq. (33)], making evident (i) the contribution from pure 
s-particle dynamics, and (ii) the contribution corresponding to collisions 
between more than s particles. 

On the basis of formula (36), we could interpret term (ii) as representing 
the modification of the effect of s-particle dynamics caused by the influence 
of the medium composed of N - s particles on the phase space and time 
dependence of the distribution of s-particle states. Our main object then 
became to find a realistic approximation to this influence, analytically 
described by expression (39). 
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The gas was assumed to be at a late stage of its evolution, when the 
correlations are already close to their final equilibrium values. In this situa- 
tion it seemed reasonable to relate the dominant effect of the medium on the 
distribution of s-particle states to the equilibrium component [see Eq. (38)] 
in the actual time-dependent correlations. This is why our approximation to 
quantity (39) consisted in taking the same spatial dependence as at equi- 
librium [Eq. (40)]. As a result, we obtained Eq. (44), or rather a series of 
equations corresponding to various values of s. 

At this point it should be mentioned that the problem of the influence of 
the medium on a two-particle cluster has been recently analyzed in a similar 
spirit by Mazenko ~21~ in his study of the self-diffusion in single-component 
fluids. Mazenko discussed the Enskog approximation for the corresponding 
memory function. The peculiarity of  this problem, in which the equilibrium 
averaging appears from the very beginning and quite a different formalism is 
used by the author, makes a direct comparison with our approach rather 
difficult. 

The analysis of Eq. (44) in the case of s = 2 [Eq. (45)] for strongly 
repulsive forces of range a has been based in Section 4 on the standard argu- 
ments used in deriving the Boltzmann equation. In the thermodynamic limit 
and for long times Eq. (45) was shown to coincide with the Enskog equation 
for a homogeneous gas. According to our approach, it should provide a good 
description not only for the singular rigid sphere potential (50), but also for 
a regular potential close to it [see derivation of formula (51)]. 

A number of open questions remain. The systematic character of  the 
theory permits to formulate our approximation at the level of s-particle 
dynamics for all s/> 2. Whereas for s/> 4 we encounter the well-known 
divergences of  the kinetic theory, ~19~ the case s = 3 (in three dimensions) is 
free of these difficulties and permits us to generalize the Enskog ideas to the 
level of three-particle dynamics. The corresponding kinetic equation, con- 
taining a modified Choh-Uhlenbeck operator, renormalized by the equi- 
librium correlations, is under investigation. Since this problem is rather 
complicated and demands a long and subtle analysis, we plan to discuss it in a 
separate paper. 

Another question left unanswered is the quantitative estimation of the 
role of the neglected terms (43) in Eq. (36), necessary for the full justification 
of our approximation. The agreement of the Enskog equation with experi- 
ment shows that at least for s = 2, terms (43) are physically negligible. This 
provides a kind of a posteriori argument in favor of our approach. However, 
the full understanding of the physical reason for the smallness of terms (43) 
remains an open question, which we plan to study in further work. Finally, 
one could also think of generalizing the present theory to the case of an 
inhomogeneous gas. 
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A P P E N D I X  

Here we indicate the method  of  proving Eq. (33). Consider first the case 
o f  s = 2. The last term in Eq. (33) then can be written as 

f g~ 2 dr  dv2 dv3 ~ 2 ( r ) [ - ~ 2 s  + ~ 2 ] f s ( x ~ ,  x2, xs;  t - ~-) 

fro = a dv~ d~- ~l~b-) - N  + ~e~  A ( x ~ ;  x~; t - ~-) 

ff2 x f~.(xl, x~; t) + ~ dv~ dT 

(0 212(,./. ) "~ ~12(T)~(~12)W2(x1, x , ; t  - -r) (A.I)  • 

where the second B B G K Y  hierarchy equation has been used and the integra- 
t ion by parts with respect to ~- has been performed. 

Equat ion (33) for  s -- 2 follows directly f rom Eq. (A.1) if  the first 
B B G K Y  hierarchy equat ion 

t) = -- ~2p f dv2 ~ 1 2  f2(xl ,  x2; t) (~/et)n~(vl 

and  the relation 

( 0 / e ~ ) ~ ( ~ )  + ~l~(~)~ex~Q = 0 

[see Eq. (34)] are taken into account.  
By systematically using the relations 

(O/~t)~. . .s(t)  = _~. . .ss  + ~ . . . ~ - 1 ( _ ~ . . . ~  + ~t~...~-~)Q 

one can also apply the same method  to derive Eq. (33) for s > 2. 
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